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A Schema for Transitioning from Rectilinear 
Coordinate Spaces to Pseudo-Hexagonal Spaces: 
Help Me Rhombus, Help, Help Me Rhombus 
 
There are two main approaches to managing wargame units interactions with their 
environments (movement, line of sight, area of effect, etc.):  freespace and gridded.  In 
the freespace approach, the units exist as entities in a continuous volume of (usually) 
Cartesian 3D space.  They move in any direction (based on interaction with “terrain” that 
occupies the same space) and interact with each other based on references and 
displacements from their position in that space.  In the gridded approach, space is broken 
up into (usually regular) shaped pieces.  Units are considered to occupy the entire volume 
of one of these pieces; movement, line of sight, and other interactions are based on the 
relationships amoung the spaces rather than the absolute positions of the units 
themselves.  Both approaches have advantages and drawbacks. 
 
The freespace approach seems to be more “natural” or “realistic” from an intuitive sense.  
Units can occupy a number of positions and orientations that is only limited by the degree 
of effort you are willing to put into measurement.  It is easy to make analogies between 
the physical world and the wargame battlespace. 
 
The challenges with freespace are mainly in complexity and level of effort in 
implementation.  Calculating relationships amoung points and volumes in freespace can 
be difficult, especially when dealing with paths through that space that are non-linear 
(they “go around” things in the space).  There are a lot of physical techniques that can 
alleviate these challenges, mostly due to the close correspondence to the physical world.  
These techniques, however, usually increase the level of effort challenges inherent in the 
freespace approach.  The archetypical  level of effort challenge puts the player in the 
position that since they have so many degrees of freedom in action, that to gain best 
advantage in those actions, they have to put large amounts of effort into examining each 
action in a high level of detail.  For example, an individual combatant who is walking a 
“S” path in freespace can have a significantly different advantage of position by making 
minute changes to the curvature and inflection points in the path. 
 
The gridded approach is generally seen to overcome the challenges of freespace.  By 
dividing the space up into reasonably sized discrete cells, movement, line of fire, cover, 
and other interactions can be implemented with relatively simple systems based on whole 
number counting.  Additionally, since there are no different positions within the cells, 
there are fewer degrees of freedom in actions, and thus the required or desired level of 
effort (“Waitaminute!  If I moved my guy a half a millimeter to the right, would that let 
me ...”) in considering options is lessened.  This decreased tactical focus frees up players’ 
cognitive resources for other, generally considered “deeper,” considerations such as 
“look-ahead,” strategy, and consideration of the meta-game. 
 
These advantages do come at a cost.  The reduction in degrees of freedom equates to a 
reduction in verisimilitude.  For example, units can occupy a certain cell or another 
adjacent cell, but cannot occupy a space “in between” the cells that might logically 



equate to a tactical advantage over either, or be the outcome of a more naturalistic 
decision process such as the desire to stop movement directly “behind” a pillar that acts 
as an obstruction to fire rather than “to the right” or “to the left” of it.  It is frequently the 
case that in three dimensional gridded systems one of the dimensions (usually “altitude”) 
is treated differently than the other two (forming the “ground”).  This usually introduces 
complexity (in the form of additional rules) and again detracts from the verisimilitude. 
 
There are other, more basic problems with the “feel” of gridded systems from the 
constraints imposed by the cell structure.  In square grids moving four units north and 
then three units east results in taking seven unit steps, but the measured distance between 
the centers of the starting and ending cells is only five units.  Breaking this movement up 
into a sequence of smaller movements does not alleviate the problem. 
 
Hexagonal grids can mitigate this problem with square grids, as the correspondence 
between the minimum number of steps between cells and the measured distance is much 
closer.  Additionally, hexagonal grids provide six degrees of freedom in movement vice 
the four of square grids at no increase in rule complexity.  Even though there are more 
options, they tend to seem less “natural,” possibly because people are more familiar with 
rectilinear grids and have more patterns of mind based on “forward, backward, right, left” 
as opposed to “every sixty degrees.”  The biology of bilateral symmetry may even have 
an effect on this, which would be a difficult part of the mindset to overcome. 
 
An additional issue with hexagonal grids is that they are not closed under composition, 
that is, you cannot take a regular hexagon and break it up into any whole number of 
smaller hexagons that completely cover the same shape.  Square grids, however, are 
easily decomposed into smaller square grids, or aggregated into larger ones. 
 
The general issue that this discussion has addressed is that there is no “perfect” approach 
to implementing a wargaming battlespace.  Each of them (and this extends to others not 
discussed) has different sets of advantages and disadvantages.  Nothing will change that 
basic nature of the various approaches, nor would it be desirable to do so.  Along with the 
advantages, the challenges define the feel of the game and focus the thinking of the 
players on certain aspects and away from others. 
 
Directing players’ thinking and behavioral patterns is a very important factor in the 
enjoyment, catharsis (immersion), and experiential learning value of wargames.  While 
the approach to implementing the battlespace is not the only driver of the players’ 
experiences, it is a significant one since it affects most decisions and other thinking about 
the game.  The goal of the proposed schema is to provide an approach to integrating 
square and hexagonal grids to make a hybrid battlespace that will allow the game to 
provide players access to the feel of either system, in portions where appropriate, with a 
minimum of difficulties in transition between the two. 
 
So what are the general feels of the square and hexagonal systems and what is a 
reasonable use case where you would want both combined? 
 



The square gridded environment provides a best fit for man made environments, 
especially the interiors of structures and built up urban areas.  The rectilinear structure of 
streets and hallways can usually be lined up with the grid itself, creating a natural 
harmony between the referent and the representation.  In general, the more densely built 
up a man made environment is, the less opportunity there is for “diagonal” movement, so 
the less important the challenges with moving large distances at angles not aligned with 
the grid are.  This system still has significant challenges representing large open areas 
and structures with multiple grids, offset angularly from each other. 
 
As a sort of compliment, the hexagonal grid is most popular with outdoor environments.  
It provides the additional degrees of freedom of motion expected in open areas and has 
much less separation between steps and measured distances over larger portions of the 
environment.  Likewise, the hexagonal system has significant challenges representing 
rectilinear shapes.  In general, they have to be constrained to unnatural, offset positions 
and the hexes that contain the edges of the rectilinear shape usually have some loss – 
large portions of area that are inaccessible to the units in the game, but not actually 
occupied by the represented terrain itself. 
 

 
 
One of the most common methods to bring these two approaches together is to not bring 
them together.  Or, more specifically, to conduct different parts of an overall scenario on 
different maps that have entirely one or the other type of grid, as appropriate.  The second 
most popular method is to severely limit one or the other type of terrain on the map and 
allow it to be represented with the approach appropriate for the dominant part of the 
terrain.  The entry point to the city might have a small strip of outdoor terrain at one edge 
of the map or the number houses and outbuildings in a rural area might be minimized.  
Both of these methods work well enough, but are certainly compromises to the idea of a 
hybrid square and hexagonal grid.  The easy way, just mashing the two grids together and 
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accepting or artificially putting obstructions in the inconvenient places where the two are 
not compatible is also somewhat unsatisfying. 
 
The proposed approach to combining square and hexagonal approaches, which we will 
call the rhombus interface, leverages rhombuses constructed from equilateral triangles 
into which the hexagon can be decomposed to bridge the gap between the approaches, 
maintain relative consistency between the two as much as possible, and provide most of 
the feel of the hexagonal approach. 
  
The approach is based on a chosen square grid, with sides of the cells being length s.  The 
hexagonal grid to be integrated will be made of slightly “stretched” hexagons (not quite 
regular hexagons), adjusted to mesh with a square grid of side s/2.  One pair of opposite 
sides for these hexagons will be of length s and parallel to one pair of sides of the square 
grid and spaced 2s apart from each other, with end points aligned.  We will call these the 
flat sides.  The point-to-point diagonal of the hexagon between the flat sides will also be 
of length 2s, and will be in the middle of the flat sides, centered on their length.  The 
sides of the hexagon that connect the flat sides to this diagonal will be called the sloped 
sides. 
 
Note that by arranging one of the flat sides with one side of the square of the base grid, 
the points of the point-to-point diagonal that defines the sloped sides align with the half 
grid.  Also note that the area of this hexagon is exactly 3s2, or the area of three of the full 
squares of the base grid. 
 

 
 
The vertices of the hexagon align with a whole number ratio of the base grid, with no 
need to approximate irrationals.  The half-unit is a standard subdivision of both English 
and Metric measures and fairly easy to physically approximate without measuring.  This 
makes calculation, vector construction, graphical representation, hand drawing of the 
grid, and calculation of an individual hexagon from a reference point without calculation 
of all the intervening hexagons all relatively easy and computationally simple.  These 
properties will propagate across the grid as the hexagons are repeated. 

triangles and a top set of rhombi 



Next, we will break this hex down into six triangles, then aggregate them to make the 
rhombi that will be the base cell for the organic part of the grid.  Dividing the hexagon is 
simply connecting the vertices with the center.  Creating the rhombi is likewise a simple 
matter of choosing pairs of triangles that share a side and eliminating that side.  The 
resulting four sides make a rhombus.  There are two different ways you can do this for 
each hexagon.  The one illustrated above will be called a top set, the opposite will be 
called a bottom set. 
 
Since each of the three rhombi are congruent (each is composed from a pair of congruent 
triangles), it is easy to see that each has an area one-third of the original hexagon, or s2,   
the same area as the squares in the base grid.  Also, the lengths of the pairs of sides are s 
for the flat sides (parallel to the flat hexagon sides) and a little less than 1.2s (√5/2 s, to be 
precise) for the sloped slides (again, parallel to the sloped sides of the hexagon). 
 

 
 
The rhomboid cell, then is decently close in basic size and shape parameters to the square 
grid cell and fairly simple to construct from that underlying grid.  These are nice 
descriptive parameters, but the real key performance parameters are how the grid 
supports interactions amoung units in different cells. 
 
Qualitatively, we can see that the rhomboid grid gives us similar degrees of freedom for 
cell to cell transition as the square grid – four choices by passing into an adjacent 
rhombus that shares a flat (in some cases) or a sloped (in all cases) side.  In the aggregate, 

cell to cell transitions 



however, the cell to cell transition is similar to the hexagonal system, giving us six 
“straight line” directions overall. 
 
Quantitatively, the cell to cell distance transitioning through a flat side is exactly s.  The 
cell to cell distance transitioning through a sloped side is √(13/16)s, or a little over .9s, for 
just less than a 10% loss for steps vice geometric distance.  When you consider the effect 
on multiple transitions that change direction, the variances get larger, but also become 
dependent on path selection to get from one cell to another.  A good metric to evaluate 
the overall distortion over larger distances is to calculate the relative area of a geometric 
circle of radius x and compare it to the sum of the areas of the unique cells that can be 
reached by x cell to cell transitions. 
 

steps 
circle 
area 

square 
grid area   

hexagonal 
grid area   

rhomboid 
grid area   

1 3.14 5 159.15% 6.06 192.97% 5 159.15% 
2 12.57 13 103.45% 16.45 130.94% 13 103.45% 
3 28.27 25 88.42% 32.04 113.33% 27 95.49% 
4 50.27 41 81.57% 52.83 105.10% 43 85.55% 
5 78.54 61 77.67% 78.81 100.34% 65 82.76% 
6 113.10 85 75.16% 109.99 97.25% 93 82.23% 
7 153.94 113 73.41% 146.36 95.08% 123 79.90% 
8 201.06 145 72.12% 187.93 93.47% 161 80.07% 
9 254.47 181 71.13% 234.69 92.23% 199 78.20% 
10 314.16 221 70.35% 286.65 91.24% 247 78.62% 
11 380.13 265 69.71% 343.81 90.45% 293 77.08% 
12 452.39 313 69.19% 406.17 89.78% 351 77.59% 
13 530.93 365 68.75% 473.72 89.22% 405 76.28% 
14 615.75 421 68.37% 546.46 88.75% 473 76.82% 
15 706.86 481 68.05% 624.40 88.34% 535 75.69% 
16 804.25 545 67.77% 707.54 87.98% 613 76.22% 
17 907.92 613 67.52% 795.88 87.66% 683 75.23% 
18 1017.88 685 67.30% 889.41 87.38% 771 75.75% 
19 1134.11 761 67.10% 988.13 87.13% 849 74.86% 
20 1256.64 841 66.92% 1092.06 86.90% 947 75.36% 

 
Because all these approximations converge on their own “best fit” to a circle, you can 
make any of them come arbitrarily as close as you want by changing the area of the grid 
cell.  However, the point of the comparison is to evaluate the grids that also have a good 
fit to the “one unit step” from center cell to center cell.  The square and rhomboid used 
above are the ones discussed.  The hexagonal grid used is the one with a flat to flat 
diameter of s, which is the one that gives a center cell to center cell transition of s.  At 
long ranges, the rhomboid approach ends up converging on an approximation of a circle 
somewhat better than the square, but not quite as good as the hexagonal. 
 
Based on the above analysis, the rhomboid grid is almost as good as the hexagonal in 
several ways, so why not just use the hexagonal grid?  The answer comes in trying to 
provide a reasonable interface between the two grids.   A regular hexagon will either have 
at least one side length or one of the diameters that is an irrational value, which means 



only certain integer multiple numbers of rows and columns of hexagons will make a good 
fit with a square grid.  Regardless of where those convergence points are for any two 
particular schema, there will still be significant loss where they are incompatible.  
Additionally, in the interim between the interfaces, groups of real number interpolations 
will have to be calculated both within one grid or the other and always to cross the 
interface.  The advantage of a gridded system is the ability to quickly calculate transitions 
using counting and whole number math and systematic, repeating formulas, especially 
where this enables calculating relationships between non-adjacent cells without having to 
calculate states for intervening cells. 
 
Because of the alignment of the rhombic dimensions with the square grid, there are a 
number of ways to interface between the two, creating a hybrid cellular space.  A schema 
is proposed in the diagram below that provides a number of highly desirable 
characteristics for the composite space, and also illustrates a few of the challenges. 
 
At first glance, the diagram shows two important things: (1) that the interface can be 
created through the repeated application a small number of simple steps, (2) that the area 
of the square grid can be maintained (that is, among the square cells, rhombic cells, and 
interface cells, all the cell coordinates that would have been in a homogeneous square 
grid of the same size are accounted for).  The color coding scheme highlights one of the 
obvious challenges.  The scheme shows: normal square and rhombic cells in white; 
truncated cells in gray; augmented cells in cyan; and added cells in blue. 
 
For the truncated cells, a square cell that overlaps with a rhombic cell is considered to be 
only the part of the square cell that is exclusive of a rhombic cell.  Conceptually parallel 
to the idea of being truncated, some of the truncated cells (the “points down” ones) only 
share a side with three different cells.  The effect on implementation is that change of 
position in two different directions could lead to the same place. 
 
For the augmented cells, a square cell that overlaps with a rhombic cell is subsumed in 
the rhombic cell.  In a similar conceptual parallel, these cells share a side with more than 
four other cells, and may share multiple sides with one other cell or have single geometric 
sides that border two cells.  This can be handled in two primary ways: (1) ignore one of 
the border cells so there is no legal cell to cell transition where there is a physical sense 
that there should be one, (2) add custom decision and management criteria for transitions 
from these cells. 
 
The added cells are less problematic.  They are simply additional rhombic cells that don’t 
align with the existing pattern that are created to aid in the interfacing process. 
 
Across all the interface cells, there are challenges with numbering and transitions, but 
these are relatively easy to deal with through the repetitive application of integer based 
algorithms.  Their most significant challenge, however, is that they cause noticeable 
problems with the flow, of the grid, which is the next topic. 
 
 



 
 
 

 
 

an interfacing schema 
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As was earlier mentioned, the entire set of expected coordinates from the square grid are 
mappable to the hybrid grid, with a small number of difficulties and a reasonable number 
of reasonably easily handled special cases (This is especially true when you consider the 
typical application stated for this approach – the meshing of relatively large areas of the 
two systems to create a combined urban-open area that is tactically useful for wargaming.  
The number of normal cells grows geometrically with expansion of the area, while the 
number of interface cells grows only linearly, with the problem cells being a relatively 
small portion of those.)  But the piecewise changes from cell to cell are not as important 
as the overall performance, especially over large distances and across multiple transitions 
– the flow of the hybrid grid.  Using the base square grid as a referent, we will look at the 
overall horizontal and vertical flows. 
 
The horizontal flow is the easiest to address and the simplest to evaluate.  One can 
transition from the (1,x) to the eighth column cells in seven steps, the same as the square 
grid.  Almost all of them are through a path that stays in the same row and most of them 
can be achieved with a repeated series of east moves, again the same as the square grid.  
Since the variations are small in number and size, this seems to be a very good fit.  
Again, going back to the typical use case, the existence of a few places where you have to 
move a little to the side to cross an area of rough ground does not seem to be 
incongruous. 
 
The vertical flow has more challenges.  The only paths through the rhombic grid that can 
maintain the number of crossing steps that the square grid has are ones that start near the 
vertical edges of the interface area.  The minimum transit paths vertically through the 
center of the rhombic grid only cost about one more transition in ten, which is compatible 
with the distance loss of the squashed hexagonal grid, and isn’t especially incongruous 
with the typical use case.  Additionally, all the minimum vertical paths that don’t run 
along the interface edge require some lateral movement.  A large variation is not 
required, but it does affect a large number of paths. 
 
When you couple the horizontal and vertical flow behaviors, an interesting characteristic 
emerges – there is an “easy” direction to transit the area, and a “hard” direction, that is, 
horizontal transition consistently requires less variation from the square grid performance 
than vertical.  This behavior is not incongruous with many open, natural areas which have 
bias in the sloping and variation of the terrain, but it is not strongly compatible with all 
types of typical use case terrain (such as a groomed and manicured park in an urban 
area). 
 
When we note that this is only a function of horizontal and vertical as displayed in the 
example and not all grids in general, we see yet another interesting emergent behavior.  
Rotational symmetry of the grid allows us to swap the vertical and horizontal of the 
sample without changing the performance parameters relative to the original horizontal 
and vertical – the easy way becomes the hard way, and vice versa.  This property creates 
the opportunity to, within the same overall map, have subsections of rhomboid grid that 
have different orientations, which could be managed to impact that tactical characteristics 
of the terrain. 



 
One additional emergent behavior of the approach is that swapping out top for bottom 
rhomboid configurations in the superposed hexagonal cells does not affect the long 
overall performance of interfaced gridded areas, but can cause additional local variations 
where the changes occur.  Again, this behavior could be managed to support specific 
terrain effects that impact the tactical characteristics of the terrain. 
 
As a final significant parameter of the hybrid grid, while it is not possible to easily 
integrate every possible combination of hexagonal and square natural areas, the interface 
is able to be changed in a regulated fashion at the edges in small increments.  This means 
it would be relatively easy to integrate a wide variety of shapes for both types of sub grid. 
 
In summary, the superposition of a rhombic grid over a base square grid provides the 
opportunity to leverage the advantages of gridded wargame battlespaces and enables 
optimization for urban and natural terrain in a piecewise fashion with a minimum of 
compromises. 
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